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On the Dynamics of Automatic Gain Controllers 
(Communication from the Central Laboratory of the Siemens & Haske AG Wernerwerk.) 

K. Küpfmüller, Elektrische Nachrichtentechnik, Vol. 5, No. 11, 1928, pp. 459-467 
 

1. Automatic Gain Controllers 

In recent years, devices for the automatic control of gain 
have increased in importance in various areas of 
amplifier technology. One class of such devices is based 
on the following principle. A portion of the output signal 
current of a valve amplifier is extracted, amplified and 
fed to a rectifier. The resulting rectified signal voltage is 
then used to vary the grid voltage of an amplifier valve. 
In this manner an increase in output power leads to a 
reduction in gain. 

 

 
Figure 1. Example of a gain controller 

 

Figure 1 is an example of such a control circuit. The 
input current at L, deriving from a given transmission 
system, will consist of signal components together with 
an a.c. control component whose frequency lies outside 
the frequency band of the signal components. For speech 
transmission, for example, the signal frequencies might 
extend from 300 to 2500 Hz, while the control 
oscillation, whose amplitude at the transmitter will be 
held constant, might have a frequency of, say, 3000 Hz. 
Assuming that variations in the transmission medium 
affect the control oscillation in the same way as the 
signal components, then the gain of the entire 
transmission section up to the output E of the amplifier in 
Figure 1 will remain constant if the amplifier gain is 
constantly adjusted in such a way that the control 
oscillation at the output of the amplifier has a constant 
amplitude. To this end, the control oscillation is filtered 
out by means of the wave filter F1, that passes only 
frequencies in the region of 3000 Hz, and fed to the 
amplifier V2. The voltage output of the rectifier G 
(negative with respect to the cathode) is cleaned of 
harmonic components by the filter F3 and applied to the 
grid of the first tube of V1. By appropriate sizing of 
individual circuit elements the change in grid voltage can 
lead to a reduction in gain which virtually neutralizes any 
increase in the control oscillation at the output of 
amplifier V1. The filter F2 prevents the control oscillation 
from reaching the receiver itself. Such devices are 
employed to compensate for fading in shortwave 
transmissions, and will be reported later. 

Related devices are amplitude limiters1 and arrangements 
for automatic volume control in radio receivers, as have 
been described by Bruce Wheeler2 and others, for 
example. In such cases modification of the gain is 
sometimes achieved by means other than varying grid 
voltage: for example, by the additional magnetisation of 
a choke or a transformer, or by a voltage divider in the 
amplifier actuated electromagnetically or using a motor. 

It is a well-known characteristic of such control 
arrangements that the variables to be held constant 
become oscillatory if too tight a control is attempted. 
Stable equilibrium is possible only under certain 
conditions. This paper will investigate these conditions in 
detail and, on the basis of a general representation of the 
dynamics of this type of control arrangement, will 
present simple approximation formulae for the estimation 
of stability conditions.  

2. The principle of the continuous, indirect controller 

The principle common to the control arrangements 
described above can be represented by Figure 2. 

 

 
Figure 2. Diagram of the controller 

The control arrangement consists in general of a 
“transmission system” M1 and a “control system” M2. 
The transmission system M1 represents the relationship 
between a system variable S1, that can vary generally 
with time, and a dependent system variable S2, that is to 
be held constant by means of the control arrangement. If 
the control system M2 were not present, then in the 
steady state a relationship would exist between variables 
S1 and S2 that can be written in the form 

  12 ASS =    (1) 

where A is the “transmission factor” of the system M1. A 
itself can in general depend on S1.  

The action of the control system M2 consists in 
modifying the transmission factor A in a way dependent 
on the variable S2 such that an increase in S2 results in a 
reduction in A and vice versa. Now, the class of 
controllers to be considered is characterised by a 
transmission factor A that is a continuous function of S2, 

                                                 
1 H. F. Mayer, ENT, Vol. 5, 1928, p.468 
2 Proc. Inst. Radio Eng., Vol. 16, 1928, p.30 
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  ( )2SfA =   (2) 

In order to achieve control, f (S2) must be a descending 
function in the region of interest – that is, with a negative 
derivative. 

In the case of the gain controller, the variable S2 could be 
the output voltage, and S1 an emf or the field strength in 
the neighbourhood of the receiving antenna. The 
transmission factor A is determined by the amplifier gain; 
it is modified by the variation in the grid voltage of the 
amplifier tube as a function of the output voltage S2 
according to Eq 2. 

Figure 2 can be applied to a range of other control 
arrangements, as can easily be seen. In the simplest case 
of a steam engine governor S1 could be, for example, the 
variable load of the engine, and S2 the speed of rotation. 
By means of a centrifugal governor M2 the opening of a 
steam valve is adjusted as a function of the engine speed, 
thus modifying the relation between load S1 and speed S2 
in the direction of control. Equations 1 and 2 also apply 
in this case. Employing already existing terminology we 
can refer to the type of control arrangements under 
discussion as continuous indirect controllers. Let us now 
briefly describe the static behaviour of such controllers. 

Suppose that S1 varies by a small amount ∆S1 such that S2 
varies by ∆S2. If the variations are sufficiently small we 
have, from Eq 1  
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Let us introduce the notation 
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where, according to the above discussion, k is positive in 
the entire region of control. The value K represents a 
measure of the non-linearity of the transmission system. 
In a linear system K = 1; in general, K may be greater or 
smaller than 1. 

Introducing the values K and k, Equation 3 becomes 
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This equation shows the effect of a relative variation 
∆S1/S1 of variable S1 on the relative variation ∆S2/S2 of 
S2. If there were no control action, k = 0 and 
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The factor 
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thus indicates by what fraction the variation of S2 is 
reduced by the presence of the control system. The value 
R can be considered as a measure of the static control 
accuracy: we shall term it the “control factor”. 

For telephone [repeater] amplifiers K is very close to 1. 
Then, for infinitely small variations dS1 and dS2 we have, 
from Eq 5 

  
1

1

2

2 dd
S
SR

S
S

=  

If the control factor is to remain constant over the entire 
region of control then, by integration we obtain 

 

  RCSS 12 =   (8) 
     

where C is an arbitrary constant. This equation represents 
the controller characteristic for constant control accuracy. 
As Figure 3 shows, as R decreases, the characteristic is a 
closer and closer approximation to the ideal of perfect 
control (dashed line). 

 

 
Figure 3. Control characteristics 

The discussion so far sheds no light on the stability 
behaviour, since implicit in Eq 1 and 2 is the assumption 
that a steady state has been reached. The way in which 
the time dependency of the variables influences stability 
can most easily be clarified by the following. 

Let the control system be distortionless3, but introduce a 
finite time delay t1. Any variation in S2 will thus be 
reflected in a corresponding variation in the transmission 
factor A, but with a delay equal to t1. Suppose, for 
                                                 
3 K Küpfmüller, ENT, Vol. 5, 1928, p. 18 
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example that there is a step change ∆1 in S1, then after 
time t1 there will be a step change in the value of A of 

  1
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As a result there will be an additional change in the value 
of S2 equal to 
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or, from Eq. 4 

  12 ∆−=∆ k   (9) 
      

In order that any initial variation does not increase 
indefinitely, the condition 

  1≤k  

must hold, and from Eq. 7, the control factor must obey 
the condition 

   5.0≥R  

In other words, the control accuracy in this case can 
never exceed 50%. Curve 1 in Figure 3 shows the limit 
of accuracy that can be expected of such a controller. 
Since in practice far higher control accuracies can be 
obtained, one suspects that this is connected with the fact 
that the controller always introduces damping of the 
process. As will be shown in more detail below, such 
damping is in fact of decisive influence on the stability of 
the controller. 

3. Stability conditions for the continuous indirect 
controller 

The dynamic behaviour of the continuous indirect 
controller has been studied in detail in a large number of 
publications, particularly regarding its application to 
prime movers. Summaries can be found in Von Mises4 
and W. Hort5. 

The principle of these stability investigations is known as 
the method of small oscillations. It consists in setting up 
the differential equations of the system for small 
deviations from the state of equilibrium. In this way, for 
a system with n energy-storing components, an nth order 
differential equation can be derived for each system 
variable. The eigenoscillations of the system can thus be 
derived from an equation with constant coefficients a1, 
a2, ... an of the form 
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4 Technische Schwingungslehre, Berlin, 1922, p.266 
5 Encykl. der math. Wiss., Vol. IV, Part 1, 2, p.254 

where p denotes the complex frequency, we obtain the 
characteristic equation 
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The condition for the existence of a stable state of 
equilibrium is then that no root of this equation has a 
positive real part. After a theorem of Hurwitz this 
condition can be formulated as follows: all the 
coefficients a1 to an must be positive or zero; further the 
following conditions must also hold: 
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This theorem is of great value for the treatment of 
stability problems when the system in question has only a 
few degrees of freedom. For controllers in amplifier 
technology, however, the number of degrees of freedom 
is often so large that this method leads to extremely 
complicated results. Neither does this theorem give any 
information on the course of events. There is, however, 
another approach that can give an insight into the 
dynamic behaviour of the type of controllers under 
consideration, even in very complicated cases. 

 
Figure 4. Feedback path [opened] 

The control arrangement can be viewed as a feedback 
system. The feedback path is indicated by the arrow in 
Figure 2. The condition for the absence of self-excitation 
according to familiar rules is derived in the following 
way. The feedback path is cut and the variable S2 
introduced separately in some other way. In the case of 
the electrical controller a voltage S2′ = S2 would have to 
be supplied (Figure 4). If a sinusoidal oscillation with 
angular frequency ω and small amplitude ∆1 is now 
superimposed on S2′, then after a sufficient time S2 will 
also vary sinusoidally with amplitude ∆2, where ∆1 and 
∆2 are related by an expression of the form 

 1
)(

2 e)( ∆−=∆ − ωω iukU  (11) 
    

Here –kU is the transmission factor [amplitude ratio] and 
u the transmission angle [phase shift] of the feedback 
path; for ω = 0, the quiescent state 

1=U , 0=u     (12) 
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so that 

 ∆2 = – k∆1 

in agreement with Equation 9. For the limiting condition, 
when the system is just on the point of oscillation then ∆2 
= ∆1 in Equation 11, so 

 ( ) 0sin =ωu    (13)  

 ( ) 1=ωkU    (14) 
      

The frequency of the oscillation follows from Equation 
13, the value k from Equation 14. 

Equations 13 and 14 form the familiar conditions for 
oscillations in a feedback loop. 

The general representation of the control process is now 
obtained when, in an analogue fashion, the so-called 
indicial response [step response] is introduced instead of 
the frequency characteristics U and u. To do this we need 
a lemma, which will now be derived for completeness. 

4 Representation of functions by means of impulses 

In mathematical physics there is a class of functions that 
can be represented in terms of sources. An example of 
such a representation will be explained briefly with 
reference to Figure 5. 

 
Figure 5. Transmission line with source of 
interference 

Let a transmission line of length l be terminated with 
arbitrary resistances R1 and R2. Assume that at point x = ζ 
the line is affected by capacitative interference from 
some adjacent telephone or high tension cable, giving 
rise to a current Ia in the line. At a given point x in the 
line a current Ix will flow, which can be expressed in the 
form 

ax II = ( )ζϕ ,x   (15) 
      

where the function φ(x, ζ) may be derived easily from 
transmission line theory. The point x = ζ can thus be 
considered to be the origin of a source of strength Ia; the 
function φ then gives the corresponding current 
distribution. If the line is subjected over its entire length 
to an external electric field, then one can imagine 
different source strengths at each point of the line. In this 
case we can write: 

 ( ) ζζ d II a =    (16) 
      

where I(ζ) represents the induced current density at any 
point x = ζ on the line. Every such source gives rise to a 
current distribution according to Equation 15, and the 
actual current is found by summing the contributions 

from the individual sources along the length of the line, 
thus: 

 ( ) ( ) ζζζϕ d  ,
0

IxI
l

x ∫=   (17) 

      

In this formula the induced current Ix is thus represented 
in terms of sources. The function φ(x, ζ) is the “influence 
function” or the “Green’s function” of the boundary 
value problem. 

This method is sometimes used to calculate crosstalk 
currents or interference from high tension lines in 
telephone cables6. Another example is the calculation of 
the acoustic fields from spatially extensive sound 
sources7. 

A completely similar manner of representation can be 
used for functions of time, rather than space, where the 
impulse takes the place of the source. 

If, in an arbitrary linear transmission system, one system 
variable is changed suddenly at time t = τ by a given 
amount S1 then a dependent system variable S2 will also 
vary according to the expression: 

 ( )τϕ −= tSS 12   (18) 
     

where the function φ is known as the indicial response of 
the system.  

If the variable S1 then returns suddenly to its original 
value at time t = τ + dτ (Figure 6), then it follows from 
Equation 18 that the behaviour of S2 is given by 

 ( ) ( )ττϕτϕ d112 −−−−= tStSS  

 

 

 
Figure 6. Impulse 

If φ(t) is a continuous function then if the change in S1 is 
of sufficiently short duration, then 

                                                 
6 K. Küpfmüller, Wiss. Veröff. aus dem Siemens-
Konzern, Vol. 1, No. 3, p. 18, 1922; Archiv für 
Elektrotechnik, Vol.12, p. 160, 1923. G. Eggeling, ENT 
Vol. 5, p. 312, 1928 
7 For example: H. Riegger, Wiss. Veröff. aus dem 
Siemens-Konzern, Vol. 3, No. 2, p. 67, 1924. H. Stenzel, 
ENT Vol. 4, p. 239, 1927 
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 ( )τϕτ −′= tdSS   12    (19) 
    

where φ′(t) is the first derivative of the indicial response 
φ(t). The function φ′(t - τ) represents the time response of 
S2 to an impulse of the form of Figure 6, if the amplitude 
of the impulse is 1/dτ. Such an impulse will be termed a 
unit impulse after G. A. Campbell. It has, strictly 
speaking, an infinitely short duration and an infinitely 
great amplitude such that the product of duration and 
amplitude is equal to unity. If S1 now varies in an 
arbitrary manner S1(t), then the time variation can be 
divided into narrow strips as shown in Figure 7. 

 

 
Figure 7. Function divided into impulses 

The function S1(t) can thus be represented by a series of 
contiguous impulses with an amplitude S1(τ) at time τ. 
According to Equation 19, to each such impulse there 
corresponds a variation in S2 given by 

 ( ) ( ) ττϕτ d ' d 12 −= tSS  (20) 
    

and the value of S2 itself at arbitrary time t is found by 
integration over all τ: 

 

 ( ) ( )∫ −′=
t

StS
0

12 d  τττϕ  (21) 

     

By analogy with Equation 17 we can say that Equation 
21 is an impulse representation of S2. If the indicial 
response possesses discontinuities of the form 

 ( ) ( ) 111
ctt tt += −+ εε ϕϕ  

where c1 represents a constant, then an impulse of the 
type of Figure 6 with an amplitude c1/dτ must be added 
to φ′(t) at time t = t1. Equation 21 gives a transformation 
rule for the calculation of the transient response for any 
variation in S1; the technique has been applied in various 
ways8. 

                                                 
8 J. Carson, Proc. Am. In., 1919, p. 407. F. Lüschen and 
K. Küpfmüller, Wiss. Veröff. uas dem Siemens-Konzern, 
Vol. 3, No. 1, p. 109, 1923. K. Küpfmüller, ENT, Vol. 5, 
p. 18, 1928 

In general the indicial response will be zero between time 
t = 0 and a given point t1 representing the time lag of the 
system. Then from Equation 21 

 ( ) ( ) τττϕ d 1
0

2
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If, in addition, the indicial response reaches its final 
value at time t = t2, then for t > t2, in place of Equation 
22 we have 

 ( ) ( ) τττϕ d  12
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We shall denote t2 as the transition time. 

5. The behaviour of the control process 

The indicial response of the control system is obtained by 
investigating the time behaviour of S2 in Figure 4 when 
S2′ is suddenly changed by a given amount. In general, 
for the control arrangements under consideration, the 
indicial response has the form shown in Figure 8.  

 

 
Figure 8. Indicial response 

Times t1 and t2 represent time lag and transition time; the 
constant final value is arbitrarily set to 1. The practical 
advantage of the introduction of the indicial response lies 
in the fact that the time evolution of this function can 
easily be determined experimentally or estimated by 
means of well known approximation rules. 

For a small step change ∆1 in S1 at time t = 0, the change 
∆2 in S2 follows from Equation 9 as: 

 ( )tk ϕ12 ∆−=∆   (24) 
      

If S1 does not undergo a step change, but varies as an 
arbitrary function y(t), then from Equation 22 we have: 

  

 ( ) ( ) τττϕ d
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If in Figure 4 in addition to S2′ the variable S1 also 
changes by a given small amount, then S2 will vary by an 
additional amount P(t). If the feedback loop is now 
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closed again, the quantity ∆2 in Equation 25 represents 
the amount by which the variation y(t) of S2 differs from 
P(t). Hence 

( ) ( ) ( ) ( )tPytkty
tt

=−′+ ∫
−

τττϕ d  
1

0

 (26) 

     

This is a type 2 linear integral equation which allows the 
time behaviour of y(t) to be calculated providing that of 
P(t), the variation of S2 in the absence of control, is 
known. Of the various methods for solving this equation 
we introduce an iterative procedure, which is particularly 
suited for graphical evaluation. 

If P(t) = 0 for negative t, then it may be seen easily from 
Equation 26 that:    
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In this manner we obtain the behaviour of y(t) in time 
steps from t1 up to time t = t2. After this point in time the 
following relation holds 

( ) ( ) ( ) ( ) τytktPty
tt

tt

d  
1

2

ττϕ −′−= ∫
−

−

 (27b) 

   

from which y(t) can be determined step-by-step by 
subtraction of the integral expression from P(t). 

 

 
Figure 9. The control process 

 

 
Figure 10. Idealised indicial response 

The curves of Figure 9 are derived using this technique, 
which show the control process for the simple case of the 
indicial response of Figure 10, where the response rises 
linearly to its final value. The control factor is assumed 
to be 1/3. It can be seen that the ratio of the transition 
time to the time lag, t2 / t1, gives a measure of the stability 
of the controller. For t2 / t1 = 2 any disturbance leads to a 
continuously growing oscillation; the case t2 / t1 = 2 
represents neutral equilibrium; while for t2 / t1 = 8 the 
disturbance dies gradually away. 

This relationship between the speed with which the 
indicial response reaches its final value, and the stability 
of the controller, can be expressed in an even more 
general fashion. 

For a free oscillation of the controller P(t) = 0 and we 
have:  

 ( ) ( ) ( ) 0d  
1

2
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If 

 ( ) tity ωe=  

it follows then that: 

( ) 0de 1
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=′+ −∫ vvk i
t

t

ων
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In the limiting case of neutral equilibrium any oscillation, 
once introduced, will last indefinitely; for very large t, ω 
is a real value representing the frequency of the 
oscillation. In this case Equation 29 can only hold if 

( )∫
⋅
∞

=′
1

0 d   sin 
t

ννωνϕ   (30) 

     

and 

( ) 1 d   cos 
1

=′− ∫
∞

t

vvvk ωϕ   (31) 

     

Equation 30 gives the frequency of the oscillation and 
Equation 31 a limiting value for k.  
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From Equation 7 we obtain the control factor 
representing the boundary between stable and unstable 
regions for the controller; it is: 

( )

( )∫

∫
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∞
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1
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 d  cos
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t
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R0 represents the control accuracy that can be obtained in 
the most favourable case for the given indicial response. 
In practice the control accuracy must be significantly 
poorer, in order for a disturbance to die away in a 
sufficiently short time. 

Equations 30 and 31 correspond fully to the conditions 
13 and 14 of Section 3; they can be derived from the 
latter using the Fourier integral theorem. 

If the indicial response takes the form shown in Figure 
10 then from Equation 30 
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2
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and from Equation 32 we have 
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Figure 11. Stable and unstable regions 

The critical control factor R0 is thus a function of t2/t1 
only. Figure 11 gives a graphical representation of the 
relationship expressed in Equation 33; it shows, for 
example, that the transition time must be at least 200 

times the time delay if the control accuracy is to achieve 
1%. In the absence of a pure time delay (t1 = 0) then any 
control accuracy can be achieved. 

6. Approximation rules 

It is noteworthy that the magnitude of the critical control 
factor is relatively independent of the precise form of the 
indicial response.  

 
Figure 12. Critical control factor for the indicial 
responses 

Figure 12 shows R0 for the indicial response curves of 
Figure 13. In I the indicial response consists of two 
parabolas; in III of straight lines and parabolas; in II ω 
[sic] forms an exponential function for values of t > t1; 
IV is equivalent to Figure 10. The time delay and 
transition time are in each case defined by the tangents at 
the points of maximum slope of φ, as can be seen in 
Figure 13. 

The dashed curve in Figure 12 shows the case where 

 
21

1
0 tt

tR
+

=  

It can be seen that this curve is an approximation to the 
critical control factor, so we can state the following rule 
of thumb for the estimation of stability: The control 
factor of a continuous indirect controller must be greater 
than the ratio of time delay to transition time. 

If a controller has a tendency to oscillation, then the 
transition time must be increased with respect to the time 
delay. 

It can be seen from Figure 9 that after a relatively short 
time the response becomes a damped sinusoidal 
oscillation. One can interpret this as the higher harmonics 
decay significantly faster than the fundamental 
frequency. The damping factor δ for the fundamental can 
be calculated from Equation 28, by determining the ratio 
of amplitudes of two successive half cycles. 
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Figure 13. Various indicial responses 

 

In this way the following approximation formula can be 
obtained: 
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n11
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where 
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R0 is the critical control factor, and R the actual control 
factor of the controller. The frequency of the 
fundamental oscillation is approximately 

 
T
πω =  

The last relationship holds true for the case where φ′(t) is 
symmetric about the ordinate t = T. Thus we have the 
following rule of thumb for the speed of the control 
process: 

The time required by a controller to move from one state 
of equilibrium to another is proportional to the 
arithmetic mean of the transition time and the time delay, 
and inversely proportional to the logarithm of the ratio 
of control factor to critical control factor. 

 

As a final application of these rules consider now the 
case when the control arrangement includes a long filter 
network. If ω1 and ω2 are the limits of the pass band, and 
n is the order of the filter (in the simplest case thus the 
number of elements) then from known approximation 
formulae9: 
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If n is sufficiently large, then for the rise time 
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For long ladder networks, then (n >> 1) the time delay is 
almost equal to the transition time, and the critical 
control factor R0 ≈ 0.5. Hence when greater control 
accuracy is required, long ladder networks cannot be 
used in a control system. 

7. Summary 

The control arrangements used in amplifier technology 
are based on the principle of the continuous indirect 
controller. In order to investigate the stability behaviour 
of such controllers it is useful to introduce the concept of 
the indicial response. An integral equation can then be set 
up which allows the evolution of the control process to 
be calculated in a simple fashion. Examples of the 
application of this equation include a determination of 
the general relationship between stability and speed of 
control. Stability is greater, the slower the indicial 
response is in reaching its final value. Approximation 
rules have been derived for this relationship, and it is 
demonstrated that the use of long ladder networks in such 
controllers must in general lead to self-oscillations. 
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9 H. F. Mayer, ENT, Vol. 2, p. 335, 1925. K. Küpfmüller, 
ENT, Vol 1, p. 141, 1924 


