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The object of this paper is to investigate the equation of motion of a direct-acting 
governor mounted on an engine, when the equilibrium between the driving force and the 
load on the engine is disturbed. The author considers the case in which speed 
variations and governor displacements are small. 
 
The author expands the various functions expressing the problem as series in 
increasing powers of small quantities, and considers only terms proportional to the first 
powers of these quantities. Treating the problem in other respects from a general point 
of view, he assumes the governor to be provided with a cataract1 (a piston immersed in 
a liquid which it displaces as it moves). The resistance of this cataract is assumed to be 
proportional to piston velocity, which is always relatively small. Finally, the passive 
friction of the governor and the elements it controls are disregarded, which is 
permissible for well-designed governors such as those on the various Corliss engines. 
 
Let 

 
t = time elapsed since the disturbance of the equilibrium between driving force 

and load; 
u = the value at time t of the displacement of a point on the governor controlling 

the element used to vary the driving force; this displacement is assumed to be 
rectilinear; the velocity of the given point is du/dt and its acceleration d2u/ dt2; 

0ω  = angular velocity of the engine shaft under normal operating conditions;  
ω   = shaft velocity at time t; 

uω  = shaft velocity corresponding to governor equilibrium at a distance u from its 
normal position; 

 p = normal magnitude of the driving force and load, referred to the same 
torque arm ρ  from the axis; 

q = value taken by the load after its sudden variation; 

P = magnitude of the driving force corresponding to the position of the 
governor after time t; 

J = moment of inertia of the engine about the shaft. 

The author expresses that part of the acceleration d2u/dt2 that depends on the speed 
change of the engine by K(ω –ω o)/ω 0, and that part resulting from the effect of the 
cataract by –M du/dt. Furthermore, he sets 
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1 'Cataract' was a common term at that time for a hydraulic damper or dashpot. 
(Translator’s note) 
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where K, L, M and N are positive constant coefficients whose values depend on the 
governor design and its arrangement on the engine. The following equation is thus 
obtained: 
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As this equation is third-order, linear and with constant coefficients, its solution depends 
on the roots of the equation 
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To simplify the discussion of the various cases that arise, the author introduces two 
new variables x and y. By setting 
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it is proved that 

(1) all governors for which xy < 1, when disturbed from their equilibrium position, 
oscillate with an amplitude which increases indefinitely with time; this renders them 
unsuitable for governing engine motion; 

(2) all governors for which 
 02718)(4     ,1 3322 <−++−> xyyxyxxy  

oscillate with decreasing amplitude, and their position converges indefinitely 
to that corresponding to equilibrium; 

(3) all governors for which 
 02718)(4 3322 >−++− xyyxyx  

do not oscillate, but move in one direction only, converging to the position of 
equilibrium between the driving force and the new value of the load. 
 

In order to illustrate these principal results more clearly, the author plots the curve given 
by the equation 

02718)(4 3322 =−++− xyyxyx  

which will be referred to in the following discussion by (A), and the rectangular hyperbola 
with the equation xy = 1. The area between the positive axes OX and OY is divided by 
these two curves into three regions.2 The first, between the hyperbola and the axes, 
contains those points corresponding to governors with periodic motion of increasing 
amplitude with time. The second, between the hyperbola and the curve A, corresponds 
to governors with periodic motion but decreasing amplitude. The third, bounded by the 
curve A, corresponds to governors which, once disturbed from their equilibrium position, 
move in one direction only. If, for a given governor, values of x and y are calculated, the 
nature of the motion of the governor may be determined immediately from the diagram.  

                                                 
2 The full versions of the paper, published in Russian, German and French over the following two years, 
include the diagram reproduced as Fig 1 (which shows additional, modern, s-plane plots indicating the 
characteristic pole configurations associated with various regions).  
(Translator’s note) 
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The author draws the following conclusions. 

(1) A governor not provided with a cataract, whatever the other details of its design, 
cannot operate effectively, since for such a governor M = 0 and consequently x = 
0; the condition xy> 1 cannot be satisfied.3 

(2) An isochronous governor4 cannot operate effectively, even if provided with a 
cataract of any size whatsoever, since for such a governor N = 0, Y = 0 and the 
 condition xy> 1 again cannot be satisfied. 

By considering particular cases, the author demonstrates that the second conclusion is 
valid for all cataracts, whatever the exponent of the power law relating opposing forces 
to velocity. Although eliminating strictly isochronous governors, the author shows that the 
search for very nearly isochronous governors is still of great importance. Since the limit 
to which the engine speed tends is 
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for a correctly operating governor, the final engine speed varies with load less and less 
as N approaches zero, so that it is profitable to make N as small as possible5, increasing 
cataract action so as to satisfy the condition xy> 1. 
 
Finally, the author explains that, owing to the effect of passive friction, certain governors 
not satisfying the condition xy> t can still act effectively. However, this advantage is 
obtained at the expense of sensitivity which may only be maintained by reducing passive 
friction to a minimum. 
 
  

 
 

Figure 1. Wischnegradski's stability diagram, with the addition of typical s-plane pole positions. 

                                                 
3 This conclusion caused some disbelief at the time, since many governors operated effectively without 
hydraulic damping, owing to the effects of other frictional forces. 
 (Translator's note) 
4 That is, one without offset. Wischnegradski modelled the engine as an integrator, so an isochronous 
governor, with integral action, would render the closed-loop system absolutely unstable in the absence of 
any device to introduce some phase lead. Maxwell (1868) had earlier shown that offset could sometimes be 
eliminated without instability. See Bennett, S., A History of Control Engineering 1900-1980, Stevenage 
UK, Peter Peregrinus, 1979,  and Fuller, A. T. (ed), Stability of Motion, London, Taylor & Francis, 1976 for 
a discussion of nineteenth-century attempts to eliminate offset in steam engine governors.  
(Translator's note) 
5 Or, as we might put it now, increasing controller gain reduces steady-state error, so long as the loop 
remains stable. N is the restoring force constant of the governor, so 1/N corresponds to controller gain. 
(Translator’s note) 


