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1. In recent years so-called self-sustaining oscillations have aroused an increasingly keen interest in 
several areas of the natural sciences. These oscillations are governed by differential equations which 
differ from those studied in mathematical physics and classical mechanics. The systems in which 
these phenomena arise are non-conservative, and sustain their oscillations by drawing energy from 
non-periodic sources. 
 
We can cite, for the case of partial differential equations, the ancient problem of a vibrating string 
excited by a bow, as well as the problem of the Cepheids, addressed by Eddington1; for the case of 
ordinary differential equations we have, in mechanics the Froude pendulum2, in physics the triode 
oscillator3; in chemistry periodic reactions4; and similar problems arise in biology5. 
 
2. Consider the simplest case of the self-oscillations that arise, in mechanics and physics, in a 
system with one degree of freedom; in chemistry in a reaction between two substances; in biology 
when two animal species co-exist. These systems can be represented by two simultaneous 
differential equations: 
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It is well-known that the steady-state solutions of such a system can be of two types: either constant 
or periodic in t. We require, on the basis of the study of actually observed phenomena of this type, 
that the periodic motions under consideration are stable with respect to sufficiently small arbitrary 
variations in (1) initial conditions6 and (2) the second elements of equations A7. 
 
It may easily be shown that, to periodic motions satisfying these conditions, there correspond, in the 
xy plane, isolated closed curves, approached in spiral fashion by neighbouring solutions from the 
interior or the exterior (for increasing t). As a result, self-oscillations arising in systems 
characterised by equations of type A correspond mathematically to stable Poincaré limit cycles8. 
 
It is thus clear that the period and amplitude of the steady-state oscillations are independent of the 
intial conditions. Discussion of differential equations relating to real examples show that they 
exhibit limit cycles, which define the steady state motion. 
 
3. The general theory9 of the integral curves [solutions] of equations of type A allows, in many 
cases, the qualitative study of these equations and to draw conclusions as to the existence, number, 
                                                 
1 Eddington, The internal constitution of stars, p. 200 (Cambridge, 1926) 
2 Lord Rayleigh, The theory of sound, London, 1, 1894, p. 212 
3 See, for example, Van der Pol, Phil. Mag., 7th series, 2, 1926, p. 978 
4 See, for example, Kremann, Die periodischen Erscheinungen in der Chemie, p. 124 (Stuttgart, 1913) 
5 Lotka, Elements of physical biology, p. 88 (Baltimore, 1925). See also the recent researches of Monsieur Volterra. 
6 See Liapunow, Problème général de la stabilité du mouvement (Ann. de la Faculté des Sciences de Toulouse, 9, 1907, 
p. 209) 
7 See Bieberback, Differentialgleichungen, p. 68 (Berlin, 1926) 
8 Poincaré, Oeuvres, 1, p. 53 (Paris, 1928) 
9 Pincaré, loc. cit.  Bendixson, Acta mathematica, 24, 1900, p.1 
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and stability of the limit cycles. The quantitative solution of the problem, which consists in 
expressing x and y as function of time, can only be obtained easily for the case of small parameter 
values10. Consider, as an example, the particular case11 where equations A are 
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where µ is a real parameter which we can choose to be sufficiently small. When µ  = 0, equations B 
have a solution x = R cos t, y = –R sin t; the solutions form, in the xy plane, a family of circles. 
Following Poincaré’s methods, it can be seen that for sufficiently small µ ≠ 0, the xy plane contains 
only isolated closed curves, near to circles with radii defined by the equation 
 

(C)  0]0)sin ; sincos(cos)0 ;sin ;cos([
2

0

=−−−∫ ξξξξξξξ
π

dRRgRRf  

 
These closed curves correspond to stable, steady-state motion where the following condition is 
fulfilled: 
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The correction to be made to the fundamental period 2π, and the expressions for x and y, are 
obtained in the form of ordered series in powers of µ, convergent for sufficiently small values of µ. 
 
4. The theory of self-oscillations, until now almost exclusively supported by non rigorous methods, 
is thus put on a solid mathematical footing, at least in the simplest case.  
 
Electrical self-oscillations are the most accessible to experimental study. It is certain that a range of 
characteristic phenomena accompanying these oscillations12 will also be found in mechanical or 
chemical self-oscillatory systems. 

                                                 
10 Poincaré, Les méthodes nouvelles de la mécanique céleste, 1, p.89 (Paris, 1892) 
11 This case is of great physical interest: sinusoidal self-oscillations in systems of one degree of freedom (triode 
oscillator, for example) can be reduced to it. 
12 For example, the phenomenon that the Germans call Mitnehmen (see H. Barkhausen, Elektronen-Röhren, 3, p. 32, 
Leipzig, 1929) 


